
Performance Implications of Securing Active Networks

D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis and Jonathan M. Smith�yz

Abstract

Security is an obvious risk to active networking, as increased flex-
ibility creates numerous opportunities for mischief. The point at
which this flexibility is exposed,e.g.,through the loading of code
into network elements, must therefore be carefully crafted to ensure
security.

The Secure Active Network Environment (SANE) architecture
provides a secure bootstrap process resulting in a module loader /
packet execution environment. As a set of nodes bootstrap, they
exchange certificates to permit secure module exchange.

This paper demonstrates that SANE, while exhibiting perfor-
mance degradation relative to unsecured operation, is able to per-
form acceptably. We include measurements comparing the loading
of an active ping on a secure versus an insecure infrastructure.

1 Introduction

Active Networks is a proposal for packet-switched networks which
are programmable, perhaps on a per-user or even a per-packet basis.
The more aggressive proposals share the property that “programs”
are loaded into network elements on-the-fly, providing rapid dy-
namic reconfiguration of the network infrastructure.

Operational infrastructures have been produced by several ini-
tial efforts such as Active Bridging [ASNS97], ANTS [WGT98]
and PLAN [HKM+98]. These efforts are points in a design space
which has many dimensions, the most important of which are flexi-
bility, security, usability and performance. Programmable network
elements provide flexibility and usability via the choice of pro-
gramming language and execution environment. For example, the
portability and distributed programming support of the Java pro-
gramming language have made it a popular basis for active net-
working prototypes. For such systems, improving the performance
of Java [HPB+97] is one approach to improving active network
performance.

�Scott Alexander, William Arbaugh, and Angelos Keromytis are each working to-
ward a Ph.D. in computer and information science at the University of Pennsylvania.

yJonathan M. Smith is an associate professor at the University of Pennsylvania.
zThis work was supported by DARPA under Contract #N66001-96-C-852, with

additional support from the Intel Corporation.

1.1 Security for Active Networks

Security of active networking is a major challenge, as well as a
widespread and legitimate cause for concern. One view of Informa-
tion security can be characterized as getting the right information
to the right person at the right place and time. This is the positive
statement of a security policy; other security policies might assert
what cannotoccur. The flexibility of an active networking infras-
tructure, since it might be exploited for mischief, has the effect of
hugely expanding the threat model for attacks on the network in-
frastructure. For example, “denial-of-service” attacks can now be
made against a variety of resources, such as CPU cycles, output
link bandwidth and storage, since these are exposed either wholly
or in part to loaded programs.

Typical reasons for deferring consideration of security, aside
from simple difficulty, are the negative consequences making a
system more secure has for each of flexibility, usability and per-
formance. Since the programming language based approaches to
active networking offer advantages in terms of flexibility and us-
ability, and performance optimizations for these environments are
ongoing, providing security to such an environment would offer an
attractive design point among the various tradeoffs.

1.2 Paper Overview

In this paper, we begin with a description of the Secure Active Net-
work Environment (SANE). The SANE infrastructure provides se-
curity guarantees to the network elements and overlaid services.
Additional security services can be built on top of SANE, using the
existing primitives. These primitives include secure bootstrapping
using the AEGIS architecture [AKFS98]; key exchange; authenti-
cation and identification of network entities; packet confidentiality
and integrity; resource and access control; and name space protec-
tion.

SANE’s approach to providing high performance is based on
the observation that security-based restrictions on programming en-
vironments are enforced by use of checking,e.g.,arguments, ad-
dresses or operations. Checking can either be done statically, for
example to force the system into an acceptable initial state, or dy-
namically, to ensure that the system remains in an acceptable state.
Since dynamic checks are more common, they are good candidates
for optimization,e.g.,address checks are performed in a proces-
sor’s virtual address translation hardware. Our approach to provid-
ing security does so with good performance because we perform
static checks which allow later dynamic checks to be faster, or even
eliminated.

Section 2 briefly presents the SwitchWare architecture. Sec-
tion 3 discusses old and new threats in such an environment. Sec-
tion 4 describes the SANE architecture, and Section 5 presents the

current status of the implementation along with a list of experi-
ments and performance results. Section 6 briefly reviews related
projects. Finally, Section 7 discusses future extensions and direc-
tions.

2 Overview of SwitchWare

While the Secure Active Network Environment (SANE) architec-
ture is portable across many active networking environments, our
experimental prototype is constructed in the context of the Switch-
Ware active network architecture. SwitchWare is based on the ap-
proach of using restricted semantics to contain the behavior of po-
tentially mischievous programs. This has the benefit that enforcing
restrictions can be performed once at compile or link time, result-
ing in a lower cost than an OS approach such as memory protection
which requires repeated checks at runtime. These semantic restric-
tions depend on the integrity of other system components such as
the operating system, shared libraries, etc. The semantic restric-
tions are enforced with a strongly-typed language which supports
garbage collection and module thinning.

2.1 Why Does the Language Matter?

The programming language defines what operations the program-
mer can perform. By careful choice of language, we can limit some
of the undesirable actions that a programmer might unintentionally
or maliciously perform. Thus, through the choice of language, we
can prevent certain classes of security violations.

The first property that we desire from the language is strong
typing. In a strongly typed language, the only way to convert data
from one type to another is through a well-defined conversion rou-
tine. Thus, one can typically transform an integer into a floating
point value, but cannot perform conversions to or from a pointer
type. In a weakly typed language like C, it is this ability to freely
convert types which leads to the need for heavier security mecha-
nisms including separation of address spaces between processes.

The second property that we desire is garbage collection. If the
programmer is able to manage storage directly, two problems can
result. The first is failure to free storage which can lead to loss of
performance throughout the system. The second, more dangerous
problem, occurs when storage is returned to the allocator and then
referenced later. If the storage has been reassigned to another user,
it is possible to discover another user’s information. Worse yet, if
the address is no longer valid, a fault results which must be handled
to avoid crashing the entire system.

The third property that we desire is module thinning. By mod-
ules, we mean a set of functions and values which are have been
combined into a package by the programmer. Module thinning is a
technique which allows us to pick and choose which functions and
values from a module are available to a switchlet which we load.
For example, in the Thread module that we use, there is a function
which allows one to kill any program on the system by specifying
its process ID. This is inappropriate for switchlets, so we do not
make this available except to the loader and the Core Switchlet.

The final property which we require is the ability to dynam-
ically load programs. Clearly, if we intend to run programs that
arrive over the net, we must have a way to link those programs into
the running system and evaluate them. Dynamic loading gives us
this ability.

The Caml programming language [Ler95] provides these fea-
tures. Caml additionally provides us with a threads interface and
static type checking. The former allows a natural programming
style and precludes the need to implement a scheduler. (We have,
however, discovered that the scheduler imposes an unexpectedly
high overhead. See section 5 for details.) The latter pushes many
of the costs associated with the type system to compile time. Thus,

checks that other systems perform repeatedly at runtime, we per-
form once at compile time.

2.2 The Loader

The loader forms the basis of the dynamic security for our network
infrastructure. Once it has been securely started by the AEGIS
bootstrap, the loader provides a minimal set of services necessary
to find the Core Switchlet and start it running. It also provides pol-
icy and mechanism for making changes to the Core Switchlet, if
that is desirable.

The loader is responsible for providing the mechanism by which
modules are loaded. Currently, the mechanisms provided are load-
ing from disk or loading from the network. The Core Switchlet
governs the policy by which this mechanism may be used and may
provide interfaces to the mechanism.

2.3 The Core Switchlet

The Core Switchlet is the privileged portion of the system visible to
the user. Through the use of module thinning, it determines which
functions and values are visible to which users. The services that it
provides are broken into several modules.

The first module isSafestd . This module provides the func-
tions that one would expect to find in any programming language
including addition and multiplication as well as more complex ab-
stractions like lists, arrays, and queues. Many functions including
the I/O functions have been thinned from this module to make it
safe.

The next module isSafeunix . This module has been very
heavily thinned; it gives access to Unix error information, some
time related functions, and some types that are needed for the net-
working interface that we provide. Access to the rest of the Unix
functions has been thinned away.

In order to allow the user to supply error or status messages, we
have aLog module. The user supplies a string which will be saved
to a system log. What and where this system log is, is not defined.
For convenience while debugging, we currently write the messages
to a disk file, but for security purposes, we intend to extend this
module to limit the number and frequency of messages produced
by any given thread.

Access to the network is provided by theUnixnet and the
Safeudp modules. Unixnet provides access to raw Ethernet
frames;Safeudp provides access to the Linux implementation of
UDP [Pos80]. This allows switchlets to access network interfaces
for either sending or receiving frames or packets. Currently, only
one switchlet is allowed to have access to a given interface or UDP
port. In the near future, we intend to modify this module to receive
and demultiplex the data. Access to the data will then be available
to any switchlet, assuming said switchlet can prove that it has the
authority to access the data. For the work described in this paper,
we used theSafeudp interface.

Thread support in SwitchWare is provided by a set of three
modules:Safethread , Mutex , andCondition . These pro-
vide a threads package which helps in the structuring of the sys-
tem. Each switchlet runs in a thread and is capable of creating
additional threads. When a switchlet is first started, it is given an
identifier inside of an opaque type. (An opaque type is one which
has no conversion functions to or from any other type. Thus, the
identifier cannot be forged.) In order to use additional resources
including creating additional threads, the switchlet must provide its
identifier which allows the system to check the resources currently
consumed and allow or deny the request for additional usage.

Finally, we have a set of modules to support loading of switch-
lets. TheAegis module allows access to the AEGIS public keys.

TheAn marshal module gives interfaces to allow quick transfor-
mations between strings and the standard format in which we ac-
cess our active packets. TheFunc module allows files or strings to
be loaded and executed based on the system access policy. Finally,
Route is a very simplistic static routing scheme which allows us to
impose an arbitrary active network topology on top of our physical
network without the need to crawl under desks to move cables.

2.4 The Library

The library is a set of functions which provide useful routines which
do not require privilege to run. The proper set of functions for the
library is a continuing area of research. Some of the things that are
in the library for the experiments that we have performed include
utility functions for sending and receiving active packets.

3 Threats

An active network infrastructure is very different from the current
Internet. In the latter, the only resource consumed by a packet at a
router is the memory needed to temporarily store it and the CPU cy-
cles necessary to find the correct route. Even if IP [Pos81] option
processing is needed, the CPU overhead is still quite small com-
pared to the cost of executing an active packet. In such an environ-
ment, strict resource control in the intermediate routers was con-
sidered non-critical. Thus, security policies [Atk95c] are enforced
end-to-end. While this approach has worked well in the past, there
are several problems. First, denial of service attacks are relatively
easy to mount, due to this simple resource model. Attacks to the
infrastructure itself are possible, and result in major network con-
nectivity loss. Finally, it is very hard to provide enforceable quality
of service guarantees. [BZB+97]

Active Networks, being more flexible, considerably expand the
threat possibilities. The security threats faced by such elements
are considerable. For example, when a packet containing code to
execute arrives, the system typically must:

� Identify the sending network element

� Identify the sending user

� Grant access to appropriate resources based on these identi-
fications

� Allow execution based on the authorizations and security
policy

In networking terminology, the first three steps comprise a form
of admission control, while the final step is a form of policing. A
second view is that of static versus dynamic checking. Security
violations occur when a policy is violated,e.g.,reading a private
packet, or exceeding some specified resource usage.

4 Overview of SANE

The following subsections present the components of SANE and
explain how they fit together. Figure 1 shows the various compo-
nents of SANE and their dependencies. SANE provides security
from the moment that power is applied to an active network node.
This is done by using a secure bootstrap process that provides in-
tegrity guarantees for nodes firmware and operating system compo-
nents. Once the operating system and active network environment,
e.g.Caml runtime have been verified, the static integrity guarantees
of the system have been assured and we transition to our dynamic
integrity mechanisms.

Loadable Modules

Module Checking

Caml Runtime/Loader

Linux Process VM

O.S. (e.g., Linux)

Memory Protection

Boundary

Secure Bootstrap

and Recovery, via

AEGIS

Integrity

Dependencies

Remote Authentication

of Modules

Trusted POST

POST2 and Exp. ROM

Figure 1:SANE Architecture

4.1 AEGIS

All secure systems assume the integrity of the underlying firmware,
but typically cannot identify when this assumption becomes in-
valid. This inability to detect changes in the integrity state of the
hardware and firmware results in a significant security problem.
The AEGIS Secure Bootstrap architecture reduces the severity of
this problem by providing static integrity guarantees of the boot-
strap process. We define the static integrity property to mean that
an object has not been altered while in storage or transit. We further
define dynamic integrity as a property that an object has not been
altered while in use. For instance, self-modifying code violates the
dynamic integrity property.

AEGIS provides static integrity guarantees by using a combina-
tion of two techniques [AFS97] [AKFS98]. The first technique re-
duces the size of the firmware assumed as having the static integrity
property down to the small section that tests the proper operation of
memory and the motherboard. The second technique uses induc-
tion, digital signatures and modifications to the control transitions
from major modules,e.g.CALL and JUMP instructions, to ensure
the static integrity of the next module. We call the combination of
these techniques Chaining Layered Integrity Checks (CLIC).

4.1.1 Chaining Layered Integrity Checks

Complex systems typically use structured decomposition to pro-
vide different levels of abstraction with increased functionality at
succeeding levels. These decompositions induce adepends upon
for correctnessdependency relation between the levels [Par74]. In
secure systems, this form of decomposition serves to reduce the
size and number of the objects that require verification,e.g. assur-
ance of the object’s proper operation. This is important because
the verification process is typically difficult and expensive. Once a
system of this type has been decomposed and deemed trustworthy
by a verification process, ensuring the system remains trustworthy,
e.g. the system’s static integrity remains unchanged, is a problem
since re-verification is also costly. CLIC solves this problem by
using a form of induction over the dependency relations,e.g. lev-
els, created by the decomposition of the system. The base case of
the induction argument is the root of a derivation tree where the
integrity of this level,Li, is assumed as correct. The induction step
is the verification,V , of a digital signature affixed to the next level,
Li+1, in the derivation tree. If the integrity of levelLi+1 is veri-

fied, then the induction process is continued until theLn�1 level at
which point the integrity of the system is proven to be the same as
when the digital signatures were affixed. This results in the simple
recurrence relation for CLIC shown in Equation 1.

I0 = True;

Ii+1 =
n
Ii
V
Vi(Li+1) for 0 < i < n:

(1)

Expansion ROMs

Boot Block

Operating System

Initiate POST

Level 0

User Programs

Network Host

Recovery Transition

Control Transition

Legend

Level 1

Level 2

Level 3

Level 4

Level 5

Trusted POST

POST2

Recovery ROM

Figure 2: AEGIS boot control flow

With the proper application of CLIC as in AEGIS, the static
integrity of the bootstrap process is now guaranteed thereby in-
creasing the level of trustworthiness of the initialization process.
Figure 2 depicts how AEGIS divides the bootstrap process of the
IBM Personal Computer architecture into modules or levels. Level
0 is the base case and the only firmware component whose integrity
is assumed valid. Level 0, or Trusted Power on Self-Test (POST),
ensures that the hardware and memory located on the motherboard
are operating properly. Level 1, or POST2, begins the initialization
of the computer system for use by scanning for expansion ROMs
located on add-in cards located on the ISA and PCI buses of the
motherboard. Level 3, or Boot sector, begins the initialization of
the operating system by copying the OS kernel (or secondary boot
sector) into memory and passing control to the loaded image. Fi-
nally, Level 5 represents the system and user level applications that
run under operating system control. Each transition to a higher
level represents a control flow change in the bootstrap process. The
action taken at each Level transition is shown in the pseudo code
below:

void LevelTransition (Level NextLevel)
{

Hash h = ComputeHash(NextLevel);
Signature s = GetSig(NextLevel);
PublicKey p = GetPubKey(s);

If Verify(s, h, p)
JUMP(NextLevel);
Else
Recover(NextLevel);

}.

When the integrity of a module representing a Level is invalid,
a recovery process is called via the Recover function call. The
recovery process contacts a trusted repository via a secure proto-
col [AKFS98] and repairs the modules stored on writable storage
such as the hard disk or flash memory, or uses the memory con-
troller to shadow modules stored on ROM to provide a temporary
repair. This permits the system to boot when integrity errors occur
and prevents some denial of service attacks.

4.1.2 AEGIS Services After Bootstrap

After the Active Network Environment becomes operational, the
only service AEGIS provides is read access to sensitive crypto-
graphic information such as keys and certificates. There are sev-
eral reasons for limiting the services that AEGIS provides to the
active environment. The first is that since the AEGIS software is
embedded, it is written mostly in assembly language and C in or-
der to optimize its space rather than its performance. Additionally
because of issues involving memory management, the AEGIS rou-
tines would have to be reloaded from ROM with each use impacting
overall system performance. Finally, the core of the security rou-
tines for SANE should be in Caml in order to provide the security
benefits described in Section 2.1.

Providing read only access to the sensitive cryptographic in-
formation, however, is a reasonable service for AEGIS to provide
since this permits secure storage of the information on the boot
block of the flash ROM, which provides additional hardware pro-
tection against reprogramming [Haz95]. Storing the information
in this manner provides a significant increase in security over stor-
age of the information in the file system of the operating system or
active network environment.

4.2 Cryptographic Primitives

SANE provides access to various cryptographic primitives. These
can be used by other applications as-is or as building blocks for
more complex protocols. The services initially provided are:

� public key signatures (DSA [NIS94])

� symmetric key encryption (DES [NBS77])

� (keyed) hashes (SHA1 [NIS95])

This set of primitives may be enriched in the future. All the al-
gorithms have been implemented in Caml but due to performance
degradation, we use a C version of SHA1. Access to this imple-
mentation of SHA1 occurs through a Caml interface, taking care
to avoid potential bypassing of the type system. Hardware crypto-
graphic support is being considered.

4.3 Public Key Infrastructure

In our architecture, every network entity (active switch or user)
owns at least one private / public key pair. These keys (and the
corresponding certificates) are used to authenticate these entities
and authorize their actions. Although SANE depends on a public
key infrastructure, it is not tied to a particular one. Certain features,
such as selective authorization delegation, user defined authoriza-
tions and certificate revocation through expiration are desirable, but
they can be simulated in any of they proposed public key infras-
tructures. In our environment, we intend to use a combination of
SPKI [EFRT97] and PolicyMaker [BFL96]. For more details on
the certificate format, see Section 5.

X, snonce, S (M)

P CAP

CAN

Client
CAR

Client

VClient

Y=g mod py

VCA CAR

Client

CAN

Client

()

()

CAN

Server
CAR

x
k = Y mod p

hash = H(M)?

hash = H(M)?

CAN

Server

CAR

Server

X=g mod px

ServerV ()

CAV ()

cnonce = cnonce?

ClientV Client(S (M))

k = X mod p
y

snonce = snonce
?

Client Server

,

,
Server

Client

SHA1MAC(M, k)

CA

Figure 3:Authentication Message Exchange

4.4 Key Establishment Protocol (KEP)

A key element of SANE is the key establishment protocol. The pro-
tocol itself is shown in Figure 31, and is a strengthened variation
of the Station-to-Station [DvOW92] protocol, which uses Diffie-
Hellman [DH76] key exchange and public key signature authen-
tication. The goal of the exchange is to establish a shared secret
and authenticate the two protocol participants (node / node or user
/ node). Once the key is established, the authorizations of each
party are determined, through the exchange of the appropriate cer-
tificates. An example of such authorization is the amount of mem-
ory a user is authorized to use on the active switch. The derived
shared key is used to authenticate and / or encrypt further commu-
nications between the two parties.

4.5 Packet Authentication

Once a key has been established between two nodes, they can com-
mence exchanging authenticated and / or encrypted packets. In
SANE, we use the ANEP [ABG+97] packet format over UDP, al-
though in an homogenous active network a packet format would
be unnecessary. We’ve added an authentication header, as shown
in Figure 4, similar to the one used in the IPsec Authentication
Header protocol [Atk95a]. TheSPI is negotiated during the key
establishment protocol exchange, and is used to identify the se-
curity association and corresponding cryptographic material used.
TheReplay Counter is a monotonically increasing value, used
to prevent packet replay attacks. Theauthenticator is the keyed
hash (HMAC [KBC97]) computed over theSPI, replaycounter
and packet payload. We can similarly define an encryption header
similar to the IPsec ESP [Atk95b] protocol.

SPI

Packet Payload

Packet Headers

.
Other Authenticators.

.

Authenticators

Authentication Data

Replay Counter

Figure 4:Authenticator Header

1Some details were left out. For more details on the protocol, see [AKS98].

4.6 Link Keys

When a SANE node boots, it attempts to establish shared keys with
each of its neighbors. It does this by running the key establish-
ment protocol already described. In the process, the identity of the
neighbors is also verified. The administrator of an active network
can essentially “freeze” the network topology by specifying which
nodes can be neighbors. There are certain benefits in doing this:

� Certain distributed types of protocols (such as routing) can
be secured against outside attacks

� The switch offers secure forwarding services to any active
packet that requests them. This is important for mobile agent
types of applications that cannot depend on end to end se-
curity, but require some security guarantees on a hop-by-hop
basis.

� Administrative domains and their boundaries can be estab-
lished through this process. We define an administrative do-
main as the set of active nodes that are managed by the same
entity, have a common set of access and resource manage-
ment policies and, after the KEP is run, trust each other to
make trust decisions on their behalf.

4.7 Administrative Domains

A user who needs to load a number of modules on a set of active
nodes would typically have to contact each node individually and
establish security associations (SAs) with each one. This establish-
ment could happen in either a telescopic manner (where the user
“explores” the network) or a parallel manner (if the user knows the
identities of all the switches in advance). This can prove expensive
both computationally (because of the public key operations) and in
packet size (since there must be a separate authentication payload
for each node that a packet may visit).

By taking advantage of the existence of administrative domains,
we could make some optimizations:

� Once the user has established an SA with some active node
in another administrative domain, that node can act as a key
distribution server (KDC) similar to Kerberos [MNSS87].

� Only nodes at the perimeter of an administrative cloud need
verify the cryptographic integrity of packets. They can then
specify what the active packet can do in the interior of the
domain. In that respect, any machine at the edge of the do-
main can act as a firewall. In contrast to the Internet fire-
walls however, policy can be specified but not enforced at
the edges; enforcement of access and resource management
policies has to take place in the interior [BKS98].

4.8 Resource Control

Resource control on the active switch is imposed by the runtime
system, as specified by the certificates exchanged during key estab-
lishment. The protected resources include access to standard and
loaded modules, CPU cycles, memory allocated, number of pack-
ets, latency and bandwidth requirements, and others. It is a subject
of further research exactly what the right resources are and how to
resolve conflicting resource requests.

In any case, since a tenet of our approach is controlled load-
ing of modules, SANE must manage loading modules in a secure
fashion if it is to be useful in an active network. That is, it must
control which modules are loaded, and by whom. SANE associates
cryptographic certificates with modules. SANE can either require

Credential Forwarding Possible

B 2

A 3

A 2

A 1
C 1

C 2

C 3

D 2

D 1

B 1

Domain A

Domain B Domain C

Domain D

Complete Authentication Required

Figure 5:Administrative Clouds and Path Setup

a certificate for loading a particular module, or may allow univer-
sal loading of the module. Examples where such universal loading
may be useful include low-cost operations likeping , as well as the
security operations used for bootstrapping the security relationship
with remote switches. There are two classes of certificate which
can be presented by a user packet requesting access to a resource
via a module. Anadministrativecertificate allows loading of any
or all modules into the system; it is intended for management and
emergencies as might arise, and can be thought of as analogous to a
”master key” granted by the switch administrator. More commonly,
certificates are used to permit loading of selected modules. As a re-
sult, this scheme allows fine-grained control of switch resources.

4.9 Naming

Conceptually, loaded modules can be considered as the interfaces
to user defined resources. Such resources will generally be shared
between different sessions of the same principal, or even between
different principals. These principals will need to identify (name)
the particular resource they want to use.

There are then different ways of naming a dynamic resource,
each with different semantics:

� The name could be the one-way hash of the module code.
If we assume certain properties of the hash function, this
uniquely identifies the module. The two potential drawbacks
to this approach are that different versions of related services
have unrelated names and that users have to discover the
hash value (either through access to the code or by finding
a trusted source that will give the user the hash value). To
use the module represented by this name, a switchlet would
have to trust only the module itself.

� The name could be the module programmer’s public key (or
its one-way hash), along with some other identifier assigned
by the programmer (such as an ASCII string). The assump-
tion here is that the code may be signed by the programmer
(who may be different from the principal who loaded it on
the active element). Version control is possible (subject to the
structure of the programmer-assigned identifier). The signa-
ture would have to be verified by the active node before this
name becomes available. In this case, a switchlet would need
to trust the programmer before using the module represented
by this name.

� The name could be the public key of the principal who loaded
the code onto the active element (or the one-way hash of that

key), along with some other identifier assigned by the prin-
cipal. Since the principal must pass an authentication / au-
thorization check before allowed to load the code, there is no
additional overhead imposed by this naming scheme. In this
case, the switchlet must trust the installer before using the
module so represented.

In fact, it is possible to combine these naming schemes, as they
are not mutually exclusive. Different programs may access the
same resource through different names, depending on the trust poli-
cies of their respective owners. Actually accessing these services
depends on the node architecture and implementation; we plan to
use a portmapper-like approach, but other approaches (e.g., lan-
guage constructs) are possible.

As an example, imagine a principalX with a public keyP
who loads a new service that implements IP packet forwarding on
an active node. The service was written by a programmerR who
signed it with his keyQ. The hash of the code is also known to be
H. Any user can then access this service as:

1. fP; “IPv4/version1”g — the IPv4 module (version 1) loaded
byX,

2. fQ; “IPv4/version1”g — the IPv4 module (version 1) written
byR,

3. fHg — the IPv4 module known to the user, or

4. fQ; “IPv4/version2”j“IPv4/version1”g — the IPv4 module
(version 2) if available, otherwise the previous version of the
same module.

5 Implementation and Performance of SANE

We have implemented SANE in the SwitchWare environment. For
our experimental network we used a cluster of DEC Alpha PC
164SX machines, with 533MHz processors and 64MB memory
each, connected via 100Mbit switched Ethernet. All the test ma-
chines were running RedHat Linux, kernel version 2.0.33, and a
modified Caml 1.0.7 runtime system. For some of our throughput
tests, we modified the Linux kernel to allow allocation of a buffer
larger than 64KB per socket.

5.1 Cryptographic Primitives

Tables 1, 2, and 3 show the costs of the three cryptographic prim-
itives provided by SANE. Each was implemented twice based on
two different sets of integer primitives. This is because the garbage
collector requires a bit from each integer to use as a tag bit. Thus,
we have made use of a package called Int32 which supplies full 32
bit integers on both Pentium and Alpha platforms (with additional
space overhead); using this package allows a single implementa-
tion of our cryptographic routines which will run on either plat-
form. (As the tables show, this portability can come at a substantial
cost in performance.) Finally, in addition to the bytecode inter-
preter which we use, the Caml distribution also provides a native
code compiler which produces Alpha executables. Table 1 gives
the average time in seconds to hash a 4MB string using either the
Int32 package and using the 63 bit integers provided by Caml on
the Alpha. Additionally, it shows the difference in cost between
compiled and interpreted code. Table 2 shows the cost to encrypt
a 4MB message using 63 bit integers with either the bytecode or
native Alpha code. Finally, table 3 shows the cost in milliseconds
of signing and of verifying the message “abc,” using DSA. Since a
DSA signature consists of computing a SHA-1 digest followed by
the signature process itself, for a longer message, one should add
the cost of performing the hash.

Caml Int32 bytecode 86.446289 s
native 61.991894 s

Alpha ints bytecode 36.027246 s
native 2.477051 s

C 0.333212 s

Table 1:Time to SHA-1 hash 4MB of data

Caml Alpha ints bytecode 99.331543 s
native 16.723242 s

C 1.0785348 s

Table 2:Time to DES encrypt 4MB of data

In practice, to use the dynamic loader in Caml, we must use
the bytecode interpreter. This imposes a very high overhead on au-
thenticating packets, an operation which relies on the SHA-1 hash
function, so we have resorted to a C implementation. While this
greatly speeds the HMAC generation and verification operations, it
may interfere with the Caml runtime thread scheduler. Specifically,
when the end of a quantum occurs, if the current thread is execut-
ing C code, no call to the scheduler occurs and the thread will get
an extra quantum. Furthermore, when using a C code implemen-
tation, we cannot catch type-system errors internal to that code,
nor take advantage of the garbage collection mechanism available
in the runtime. For these reasons, we tried to limit the amount of
non-Caml code in our system. Thus we opted to keep the Caml
DSA and DES implementations. In the future, we intend to inves-
tigate the feasibility of statically integrating Caml native code into
the bytecode interpreter in the same way that we currently are able
to integrate C code. This would allow us to regain the advantages
of strong types and garbage collection with a more acceptable over-
head. We also believe that in the future, “Just In Time” compilation
techniques can narrow this gap in performance.

The key exchange protocol was also implemented in Caml as
a three step protocol. In the first two messages, a list of SPKI-like
certificates encoded as a string is exchanged. The third message
contains a single certificate. Since the SPKI format has not been
fully specified, we designed our own certificate format in the same
spirit. The protocol was designed to be fail safe [GS95] under all
circumstances. In the presence of loosely synchronized clocks, it
becomes fail stop (meaning that active attacks, including replays,
on the protocol, are always detected). We encode all fields in the
certificates as strings before transmission, and for signing and veri-
fication purposes. This allows us to avoid complicated marshalling
issues. The average execution time of KEP with a 256 bit Diffie-
Hellman exponent is 2.4 seconds, and with a 1024 bit exponent, 4.8
seconds. In both cases we used a 1024 bit modulus. This time is
comparable to that of the IPsec key management protocols, Pho-
turis [KS] and ISAKMP/Oakley [MSST96].

The certificate infrastructure we used in our setup is a shallow
hierarchy. A small number of keys are considered as trusted to
make statements about nodes or, more specifically, what the net-
work topology is. These same keys are also used to certify users
and specify their access rights on the active nodes. It is only a mat-
ter of policy however what sort of certificate method is followed. A
cyclic graph-type (such as in PGP) or a hierarchical approach (such
as in X.509 [Com89]) or any other method can be used. Further-
more, there is no need for an organization’s internal certification
policies to be the same as the interdomain and interorganizational
policies.

sign Caml Int32 bytecode 27.089 ms
native 12.954 ms

Alpha ints bytecode 20.907 ms
native 11.855 ms

C 2.800 ms
verify Caml Int32 bytecode 41.452 ms

native 22.121 ms
Alpha ints bytecode 35.198 ms

native 20.664 ms
C 5.000 ms

Table 3:Digital Signature Timings

5.2 Cost of Active Ping and Active Data Movement

To understand the cost imposed by authentication, we measured
the cost of sending an active ping (provided as Appendix A for
illustration) both with and without authentication. This ping was
generated at a source machine, transmitted over a crossover cable
via 100 Mbps Ethernet to the target machine, loaded and evaluated,
then sent back to the source machine, where it was again loaded
and evaluated. An unauthenticated ping took an average of 5.084
ms versus 8.052ms for the authenticated ping.

Finally, we measured the throughput of authenticated and unau-
thenticated data transfer. We used two versions of active pack-
ets: one that was dynamically linked and one that was statically
linked at startup time. The reasoning for this is that since simple
data transfer between active applications is a common operation, it
is conceivable that a simple data delivery service, with semantics
similar to those of UDP, would be standardized. Applications can
still use their own data delivery packets, with a hit in performance,
as shown in Figure 6. Additionally, this shows the benefit that a
switchlet caching scheme could provide.

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000 14000

M
bi

ts
/s

ec

Data Payload

"inSecureSend"
"SecureSend"

"inSecureReceive"
"SecureReceive"

Figure 6:Data Transfer Throughput

5.3 Performance of the Caml Runtime

To improve performance, we added a new interface to the dynamic
linking support in Caml. As distributed, one can only link files from
the disk. Reading saneping.cmo, the source for the authenticated
active ping, costs at least 3ms even if the file is in the buffer cache.
Thus, we added an interface that links a bytecode “file” directly
from memory; when a switchlet arrives over the network, we are
able to link it in without having to resort to the filesystem.

Two other areas of performance problems are the thread sched-
uler and the symbol table support within the dynamic linker. Each

time the scheduler runs, it checks the status of every thread in the
system. Thus, any extra threads (e.g.,one waiting for the comple-
tion of another thread or one which is delaying for a fixed interval)
causes measurable additional overhead. Moreover, if there is any
thread which is waiting on an I/O operation, the scheduler does a
select() to see if that operation can now complete. We measure a
typical cost of 100 to 250�s each time the scheduler is called. This
leads to a tension between the desire to avoid this overhead with
the desire to use a scheduler to prevent any thread from using more
than its share of the processor. Adopting scheduling algorithms
from operating systems could be of benefit here.

Updating the symbol table is currently the largest fraction of
the cost in dynamically linking a new module. So, for example,
to link the active ping, the total cost (including evaluating the top
level forms) averages 1470�s. Of this, symbol table updates aver-
age 891�s. Of the symbol table update time, performing relocation
operations and adding newly introduced symbols to the symbol ta-
ble averages a cost of 794�s. Since this cost is included in the ping
cost for every node visited except for the initial node, in our simple,
two node experiment, this overhead is incurred twice. Thus, out of
our average 5084�s for an active ping, more than half of the time
is spent updating the symbol table generally and more than 30%
is spent performing relocation and symbol table insertions. Worse
yet, if we deduct the 990�s generally spent in the kernel and in
transmission, we find that we are spending over 70% of the time
that we can control in symbol table updates and nearly 40% in re-
location operations. Finally, after about 100 pings, the time starts to
grow, presumably because of the growth of the symbol table. After
300 pings, the time to perform the symbol table updates has grown
to an average of 1011�s.

We believe that the symbol table costs can be addressed in sev-
eral ways. First, for a switchlet doing more substantial work than
ping, the overhead will be less significant. For example, this infras-
tructure is being used to support work in which the queueing strat-
egy of a switch is altered dynamically. Since a queueing strategy
can be expected to run for minutes at the very least, an overhead
of several milliseconds can be reasonably amortized. It may be
possible to decrease the cost of performing insertions and finds in
the symbol table through a space-time trade-off. For example, the
current balanced tree scheme could be replaced with a hash table
scheme. Finally, we suspect that the increasing cost is due to the in-
creasing size of the symbol table. If we were to distinguish between
switchlets which provide services to later switchlets (and thus need
to be in the global symbol table) and those which are intended to be
ephemeral, Caml would allow us to update the symbol table only
with long-lived switchlets. A more general approach to combating
both the increase in size of the symbol table and the cost of loading
switchlets is to cache frequently run switchlets [WGT98].

6 Related Work

The Secure Active Network Environment has no direct analogues
in ongoing work on active networks [TSS+97]. While ANTS uses
MD5 hashes (“fingerprints”) to name on-demand loaded modules,
the hashes provide unique names rather than security. The ANTS
execution environment depends on the Java programming language
for protection, a dependency shared by many active network pro-
totypes. Unfortunately, as Wallach, et al., [WBDF97] note, Java’s
security is suspect. The remote authentication and namespace secu-
rity of SANE address issues ignored in these systems, and could be
applied even in cases where Java is used,e.g.,to provide integrity
checking of the JVM or layers beneath it, as well as on-demand
loaded modules.

Another quite different approach to providing secure active net-
working is that used by the Programming Language for Active
Nets (PLAN). PLAN is a special-purpose programming language

appropriate for per-packet programs. PLAN’s semantics are pur-
posely restricted to operations which are safe and bounded in re-
source usage, with the intention of being so lightweight that any
node would be willing to run PLAN packets, including those from
remote nodes, and thus would not require the security of SANE.
However, as any enhanced services are added to the node as PLAN
extensions, such extensions would require a SANE-like approach
for security.

An architecture which extended a protection model from the
local domain to a distributed environment was provided by San-
som, et al. [SJR86], who enforced protection locally with memory-
protection enforced capabilities. (It is notable that capabilities can
be viewed as a namespace-based protection mechanism). The ca-
pabilities were extended to remote nodes via cryptographic means.
SANE provides more general mechanisms and could thus be spe-
cialized to such an application (moving memory-protected objects
about the network) but more importantly guarantees local integrity
before extending itself into the network.

7 Future Work

There is still work to be done to produce a mature version of SANE.
The two immediate goals are to fully integrate AEGIS with the
current implementation, and add the necessary hooks in the runtime
system to do resource management. For the latter, we will have to
identify the important resources and integrate PolicyMaker in the
runtime system.

We are also looking into moving SANE from a general operat-
ing system (Linux) to a more dedicated environment. Work is being
done in porting the Caml runtime to the Flux OS Kit [FBB+97] en-
vironment. We believe that this will improve the performance of
the system, since we will avoid boundary crossings (everything is
in the same address space). Elimination of the unnecessary services
and programs available in the Linux environment will also improve
the security of the active nodes. Moreover, we intend to use ANEP
directly over ethernet and avoid using UDP as the underlying trans-
port mechanism. For this, we need a packet fragmentation and re-
assembly mechanism. We are examining the mechanism available
in the PLAN environment for possible use.

Over the longer term, we intend to implement the KDC and
“active firewall” functions of SANE. As mentioned before, hard-
ware cryptographic support is also being considered. We believe
that a great performance improvement could be had by adding Just
In Time compilation capabilities in the Caml runtime system.

Our experiments also indicated that dynamic code generation
can be of great use in minimizing the size of the active programs,
especially in the case of simple data-transport packets. There is
also work done in compressing the active code overhead, such as
the PLAN architecture, which can prove useful in SwitchWare.

Finally, we intend to examine how the SANE architecture can
be used in other active network environments. In particular, we be-
lieve that SwitchWare can benefit from the code distribution mech-
anism employed by the ANTS [WGT98] system and, conversely,
ANTS can make use of the security services offered by SANE.

8 Acknowledgements

We’d like to thank Bill Marcus for his help in writing some of the
original ANEP code, and Mike Hicks for the discussions and tools
he provided us for performance analysis.

References

[ABG+97] D. Scott Alexander, Bob
Braden, Carl A. Gunter, Alden W. Jackson, Ange-

los D. Keromytis, Gary J. Minden, and David Wether-
all. Active network encapsulation protocol (anep).
http://www.cis.upenn.edu/˜ angelos/ANEP.txt.gz, Au-
gust 1997.

[AFS97] William A. Arbaugh, David J. Farber, and
Jonathan M. Smith. A Secure and Reliable Bootstrap
Architecture. InProceedings 1997 IEEE Symposium
on Security and Privacy, pages 65–71, May 1997.

[AKFS98] William A. Arbaugh, Angelos D. Keromytis, David J.
Farber, and Jonathan M. Smith. Automated Recov-
ery in a Secure Bootstrap Process. InTo appear in
Network and Distributed System Security Symposium.
Internet Society, March 1998.

[AKS98] William A. Arbaugh, Angelos D. Keromytis, and
Jonathan M. Smith. Dhcp++: Applying an efficient
implementation method for fail-stop cryptographic
protocols. Technical report, Department of Computer
Science, University of Pennsylvania, January 1998.

[ASNS97] D. S. Alexander, M. Shaw, S. M. Nettles, and J. M
Smith. Active bridging. InProc. 1997 ACM SIG-
COMM Conference, 1997.

[Atk95a] R. Atkinson. IP authentication header. RFC 1826,
August 1995.

[Atk95b] R. Atkinson. IP encapsulating security payload. RFC
1827, August 1995.

[Atk95c] R. Atkinson. Security architecture for the internet pro-
tocol. RFC 1825, August 1995.

[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. InProc. of the 17th Symposium on
Security and Privacy, pages 164–173. IEEE Computer
Society Press, 1996.

[BKS98] Matt Blaze, Angelos D. Keromytis, and Jonathan M.
Smith. Firewalls in active networks. Technical report,
University of Pennsylvania, February 1998.

[BZB+97] R. Braden, L. Zhang, S. Berson, S. Herzog, and
S. Jamin. Resource ReSerVation protocol (RSVP) –
version 1 functional sepcification. Internet RFC 2208,
1997.

[Com89] Consultation Committee.X.509: The Directory Au-
thentication Framework. International Telephone and
Telegraph, International Telecommunications Union,
Geneva, 1989.

[DH76] W. Diffie and M.E. Hellman. New Directions in Cryp-
tography. IEEE Transactions on Information Theory,
IT–22(6):644–654, Nov 1976.

[DvOW92] W. Diffie, P.C. van Oorschot, and M.J. Wiener. Au-
thentication and Authenticated Key Exchanges.De-
signs, Codes and Cryptography, 2:107–125, 1992.

[EFRT97] Carl M. Ellison, Bill Frantz, Ron Rivest, and Brian M.
Thomas. Simple Public Key Certificate. Work in
Progress, April 1997.

[FBB+97] Bryan Ford, Godmar Back, Greg Benson, Jay Lep-
reau, Albert Lin, and Olin Shivers. The flux oskit: A
substrate for os and language research. InProc. of the
16th ACM Symposium on Operating Systems Princi-
ples, October 1997.

[GS95] Li Gong and Paul Syverson. Fail-Stop Protocols: An
Approach to Designing Secure Protocols. InProceed-
ings of IFIP DCCA-5, September 1995.

[Haz95] Peter Hazen. Intel’s Flash Memory Boot Block Archi-
tecture for Safe Firmware Updates. Application Brief
AB-57, Intel, December 1995.

[HKM+98] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and
S. Nettles. Plan: A programming language for active
networks. Technical report, Department of Computer
and Information Science, University of Pennsylvania,
February 1998.

[HPB+97] J. Hartman, L. Peterson, A. Bavier, P. Bigot,
P. Bridges, B. Montz, R. Piltz, T. Proebsting,
and O. Spatscheck. Joust: A platform for
communications-oriented liquid software. Technical
report, Department of Computer Science, University
of Arizona, November 1997.

[KBC97] H. Krawczyk, M. Bellare,
and R. Canetti. HMAC:Keyed–Hashing for Message
Authentication. Internet RFC 2104, February 1997.

[KS] P. Karn and W. A. Simpson. The Photuris Session Key
Management Protocol. Work in Progress.

[Ler95] Xavier Leroy. The Caml Special Light System (Re-
lease 1.10). INRIA, France, November 1995.

[MNSS87] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H.
Saltzer. Kerberos authentication and authorization
system. Technical report, MIT, December 1987.

[MSST96] Douglas Maughan, Mark Schertler, Mark Schneider,
and Jeff Turner. Internet Security Association and
Key Management Protocol (ISAKMP). Internet–
draft, IPSEC Working Group, June 1996.

[NBS77] Data Encryption Standard. Technical Report FIPS-46,
U.S. Department of Commerce, January 1977.

[NIS94] Digital Signature Standard. Technical Report FIPS-
186, U.S. Department of Commerce, May 1994.

[NIS95] Secure Hash Standard. Technical Report FIPS-180-
1, U.S. Department of Commerce, April 1995. Also
known as: 59 Fed Reg 35317 (1994).

[Par74] D. L. Parnas. On a ’buzzword’: Hierarchical structure.
In Proc. of the IFIP Congress, pages 336–339. North-
Holland, 1974.

[Pos80] Jon Postel. User datagram protocol. Internet RFC 768,
1980.

[Pos81] Jon Postel. INTERNET protocol. Internet RFC 791,
1981.

[SJR86] R. D. Sansom, D. P. Julin, and R. F. Rashid. Extending
a capability based system into a network environment.
In Proceedings of the 1986 ACM SIGCOMM Confer-
ence, August 1986.

[TSS+97] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie,
D. J. Wetherall, and G. J. Minden. A survey of active
network research.IEEE Communications Magazine,
pages 80–86, January 1997.

[WBDF97] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Ed-
ward W. Felten. Flexible security architecture for java.
In Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles, October 1997.

[WGT98] David J. Wetherall, John Guttag, and David L. Ten-
nenhouse. Ants: A toolkit for building and dynam-
ically deploying network protocols. InTo appear in
IEEE OpenArch. IEEE Computer Society Press, April
1998.

A Code for the Active Ping

open Safeloader
open Printf
open Wf
open Safeunix
open Log
open An_marshal

type ping_packet = { start : string ;
finish : string;
timestamp : float}

let ping_encode pkt = "start = " ˆ pkt.start
ˆ "; finish = " ˆ pkt.finish
ˆ "; timestamp = "
ˆ (string_of_float pkt.timestamp)

let decode_regexp = Str.regexp
"ˆstart = \(.*\); finish = \(.*\)"
ˆ "; timestamp = \(.*\)$"

let ping_decode str ofs =
if not (Str.string_match decode_regexp
str ofs)
then failwith "bad packet"
else

{ start = Str.matched_group 1 str;
finish = Str.matched_group 2 str;
timestamp = float_of_string

(Str.matched_group 3 str)
}

(*
* This is routine that starts things off by
* handing the components of an ANEP header
* to send_wf.
*)

let send_ping dest name =
let code =

Get_bytecode.get_bytecode name in
let next_hop = Route.get_route dest in
let hdr =

{do_forward = true; type_id = 20} in
let payload = ping_encode

{ start = An.getAddress ();
finish = dest;
timestamp = Time.get_time()

} in
send_wf next_hop hdr [] "ping_out"

code payload

let ping_out arg_string =
let {code=code; data=datastr; func=func} =

decode arg_string 0 in
let ping_packet = ping_decode datastr 0 in

if (ping_packet.finish = An.getAddress())
then begin

send_wf
(Route.get_route ping_packet.start)
{do_forward=true; type_id=20} []
"ping_in" code datastr;

"at the remote machine"
end else begin

send_wf
(Route.get_route ping_packet.finish)
{do_forward=true; type_id=20} []
"ping_out" code datastr;

"not there yet; forward packet"
end

let ping_in arg_string =
let {code=code; data=datastr; func=func} =

decode arg_string 0 in
let ping_packet = ping_decode datastr 0 in

if (ping_packet.start = An.getAddress())
then begin

log_msg
(Printf.sprintf "Success (%f sec)\n"

((Time.get_time()) -.
ping_packet.timestamp));

"back at the sender"
end else begin

send_wf
(Route.get_route ping_packet.start)

{ do_forward=true; type_id=20 } []
"ping_in" code datastr;

"not back yet; forward packet"
end

let _ = Func.register "ping_out" ping_out
let _ = Func.register "ping_in" ping_in

